Wednesday, April 20, 2016

Daily Blog #379: Automating DFIR with dfVFS part 6

Hello Reader,
         It's time to continue our series by iterating through all the partitions within a disk or image, instead of just hard coding the one. To start with you'll need another image, one that not only has more than one partition but also has shadow copies for us to interact with next.

You can download the image here:!L45SRYpR!yl8zDOi7J7koqeGnFEhYV-_75jkVtI2CTrr14PqofBw

If you want to show your support for my efforts, there is an easy way to do that. 

Vote for me for Digital Forensic Investigator of the Year here:

First let's look at the code now:

import sys
import logging

from dfvfs.analyzer import analyzer
from dfvfs.lib import definitions
from dfvfs.path import factory as path_spec_factory
from dfvfs.volume import tsk_volume_system
from dfvfs.resolver import resolver
from dfvfs.lib import raw

source_path="Windows 7 Professional SP1 x86 Suspect.vhd"

path_spec = path_spec_factory.Factory.NewPathSpec(
          definitions.TYPE_INDICATOR_OS, location=source_path)

type_indicators = analyzer.Analyzer.GetStorageMediaImageTypeIndicators(

if len(type_indicators) > 1:
  raise RuntimeError((
      u'Unsupported source: {0:s} found more than one storage media '
      u'image types.').format(source_path))

if len(type_indicators) == 1:
  path_spec = path_spec_factory.Factory.NewPathSpec(
      type_indicators[0], parent=path_spec)

if not type_indicators:
  # The RAW storage media image type cannot be detected based on
  # a signature so we try to detect it based on common file naming
  # schemas.
  file_system = resolver.Resolver.OpenFileSystem(path_spec)
  raw_path_spec = path_spec_factory.Factory.NewPathSpec(
      definitions.TYPE_INDICATOR_RAW, parent=path_spec)

  glob_results = raw.RawGlobPathSpec(file_system, raw_path_spec)
  if glob_results:
    path_spec = raw_path_spec

volume_path_spec = path_spec_factory.Factory.NewPathSpec(
        definitions.TYPE_INDICATOR_TSK_PARTITION, location=u'/',

volume_system = tsk_volume_system.TSKVolumeSystem()

volume_identifiers = []
for volume in volume_system.volumes:
  volume_identifier = getattr(volume, 'identifier', None)
  if volume_identifier:
print(u'The following partitions were found:')

for volume_identifier in sorted(volume_identifiers):
  volume = volume_system.GetVolumeByIdentifier(volume_identifier)
  if not volume:
    raise RuntimeError(
        u'Volume missing for identifier: {0:s}.'.format(volume_identifier))

  volume_extent = volume.extents[0]
      u'{0:s}\t\t{1:d} (0x{1:08x})\t{2:d}'.format(
          volume.identifier, volume_extent.offset, volume_extent.size))

  volume_path_spec = path_spec_factory.Factory.NewPathSpec(
        definitions.TYPE_INDICATOR_TSK_PARTITION, location=u'/'+volume_identifier,

  mft_path_spec = path_spec_factory.Factory.NewPathSpec(
        definitions.TYPE_INDICATOR_TSK, location=u'/$MFT',

  file_entry = resolver.Resolver.OpenFileEntry(mft_path_spec)

  stat_object = file_entry.GetStat()

  print(u'Inode: {0:d}'.format(stat_object.ino))
  print(u'Inode: {0:s}'.format(
  outFile =
  extractFile = open(outFile,'wb')
  file_object = file_entry.GetFileObject()

  data =
  while data:
      data =


Believe it or not we didn't have to change much here to get it to go from looking at one partition and extracting the $MFT to extracting it from all the partitions. What we had to do was four things.

1. We moved our file extraction code over by one indent allowing it to execute as part of the for loop we first wrote to print out the list of partitions in an image. Remember that in Python we don't use braces to determine how the code will be executed, its all indentation that decides how the code logic will be read and followed.
2. Next we changed the location where our volume path specification object is set to from a hard coded /p1 to whatever volume identifier we are currently looking at in the for loop.

 volume_path_spec = path_spec_factory.Factory.NewPathSpec(
        definitions.TYPE_INDICATOR_TSK_PARTITION, location=u'/'+volume_identifier,

You can see that the location variable is now set to u'/' being appended to the volume_identifier variable. This would be resolved to /p1, /p2, etc.. as many partitions as we have on the image.

3. Now that we are going to extracting this file from multiple partitions we don't want to overwrite the file we previously extracted so we need to make the file name unique. We do that by appending the partition number to the file name.

  outFile =
  extractFile = open(outFile,'wb')

This results in a file named p1$MFT, p2$MFT, and so on. To accomplish this we make a new variable called outfile which is set to the partition number (volume_identifier) appended with the file name ( Then we pass that the open file handle argument we wrote before.

4. One last simple change.


We are setting our partition and file path spec objects back to null. Why? Because if not
they are globally set and will just keep appending on to the prior object. That will 
result in very funny errors.

That's it! No more code changes. 

You can get the code from Github:

In the next post we will be iterating through shadow copies!