@night 1803 access accessdata active directory admissibility ads aduc aim aix ajax alex levinson alissa torres amcache analysis anjp anssi answer key antiforensics apfs appcompat appcompatflags applocker april fools argparse arman gungor arsenal artifact extractor attachments attacker tools austin automating automation awards aws azure azuread back to basics backstage bam base16 best finds beta bias bitcoin bitlocker blackbag blackberry enterprise server blackhat blacklight blade blanche lagny book book review brute force bsides bulk extractor c2 carved carving case ccdc cd burning ceic cfp challenge champlain chat logs Christmas Christmas eve chrome cit client info cloud forensics command line computer forensics computername conference schedule consulting contest cool tools. tips copy and paste coreanalytics cortana court approved credentials cryptocurrency ctf cti summit cut and paste cyberbox Daily Blog dbir deep freeze defcon defender ata deviceclasses dfa dfir dfir automation dfir exposed dfir in 120 seconds dfir indepth dfir review dfir summit dfir wizard dfrws dfvfs dingo stole my baby directories directory dirty file system disablelastaccess discount download dropbox dvd burning e01 elastic search elcomsoft elevated email recovery email searching emdmgmt Encyclopedia Forensica enfuse eric huber es eshandler esxi evalexperience event log event logs evidence execution exfat ext3 ext4 extended mapi external drives f-response factory access mode false positive fat fde firefox for408 for498 for500 for526 for668 forenisc toolkit forensic 4cast forensic lunch forensic soundness forensic tips fraud free fsutil ftk ftk 2 full disk encryption future gcfe gcp github go bag golden ticket google gsuite guardduty gui hackthebox hal pomeranz hashlib hfs honeypot honeypots how does it work how i use it how to howto IE10 imaging incident response indepth information theft infosec pro guide intern internetusername Interview ios ip theft iphone ir itunes encrypted backups jailbreak jeddah jessica hyde joe sylve journals json jump lists kali kape kevin stokes kibana knowledgec korman labs lance mueller last access last logon lateral movement leanpub libtsk libvshadow linux linux forensics linux-3g live systems lnk files log analysis log2timeline login logs london love notes lznt1 mac mac_apt macmini magnet magnet user summit magnet virtual summit mari degrazia mathias fuchs md viewer memorial day memory forensics metaspike mft mftecmd mhn microsoft milestones mimikatz missing features mlocate mobile devices mojave mount mtp multiboot usb mus mus 2019 mus2019 nccdc netanalysis netbios netflow new book new years eve new years resolutions nominations nosql notifications ntfs ntfsdisablelastaccessupdate nuc nw3c objectid offensive forensics office office 2016 office 365 oleg skilkin osx outlook outlook web access owa packetsled paladin pancake viewer path specification pdf perl persistence pfic plists posix powerforensics powerpoint powershell prefetch psexec py2exe pyewf pyinstaller python pytsk rallysecurity raw images rdp re-c re-creation testing reader project recipes recon recursive hashing recycle bin redteam regipy registry registry explorer registry recon regripper remote research reverse engineering rhel rootless runas sample images san diego SANS sans dfir summit sarah edwards saturday Saturday reading sbe sccm scrap files search server 2008 server 2008 r2 server 2012 server 2019 setmace setupapi sha1 shadowkit shadows shell items shellbags shimcache silv3rhorn skull canyon skype slow down smb solution solution saturday sop speed sponsors sqlite srum ssd stage 1 stories storport sunday funday swgde syscache system t2 takeout telemetry temporary files test kitchen thanksgiving threat intel timeline times timestamps timestomp timezone tool tool testing training transaction logs triage triforce truecrypt tsk tun naung tutorial typed paths typedpaths uac unc understanding unicorn unified logs unread updates usb usb detective usbstor user assist userassist usnjrnl validation vhd video video blog videopost vlive vmug vmware volatility vote vss web2.0 webcast webinar webmail weekend reading what are you missing what did they take what don't we know What I wish I knew whitfield windows windows 10 windows 2008 windows 7 windows forensics windows server winfe winfe lite winscp wmi write head xboot xfs xways yarp yogesh zimmerman zone.identifier

Daily Blog #372: Automating DFIR with dfVFS part 2

Hello Reader,
        In this short post I want to get more into the idea of the path specification object we made in the prior part. If this post had a catch title it would be zen and the art of path specification.

If you want to show your support for my efforts, there is an easy way to do that. 

Vote for me for Digital Forensic Investigator of the Year here: https://forensic4cast.com/forensic-4cast-awards/

In the prior post, part 1 of the series, we made three path specification objects. I described path specification objects as the corner stone in understand dfVFS which I believe to be true. What I didn't point out is that the path specification objects in that first example code where building on top of themselves like a layer cake.

Let's take a look at the three objects we created again.
path_spec = path_spec_factory.Factory.NewPathSpec(
          definitions.TYPE_INDICATOR_OS, location=source_path)

source_path_spec = path_spec_factory.Factory.NewPathSpec(
            type_indicators[0], parent=path_spec)

volume_system_path_spec = path_spec_factory.Factory.NewPathSpec(
        definitions.TYPE_INDICATOR_TSK_PARTITION, location=u'/',
        parent=source_path_spec)

If you were to look carefully you would notice there are a couple of differences between the calls to the NewPathSpec function. the calls to the NewPathSpec function.

1. The type of path specification we are making is changing. We start with a operating system
file, then an image (which is being set by the return of our indicator query) and lastly
we are working with a partition.
2. Two of our path specifications declare a location, one does not
3. Most importantly, source_path_spec and volume_System_path_spec have parents. Those parents
are the path specification objects created prior.

So if you were to look at it like one single object with multiple layers it would look
something like this.


---------------------------
|  OS File Path Spec       |
---------------------------
|  TSK Image Type Path Spec |
----------------------------
|  TSK Partition Path Spec  |
----------------------------
The lowest layer in the object can reference the upper layers. This is why we don't just
create one path specification object. Instead we are initializing each layer of the object
one call at a time as we determine the type of image, directory, archive, etc.. we are
working with to allow our path specification object to reflect the data we are trying
to get dfVFS to work with.

Depending on what part of the dfVFS framework you are working with will determine how many
of these layers need to exist prior to calling that function with your fully developed
path specification object.

As we go father into the series I will show you how to interact with the files stored in the
partitions we listed in part 1. Doing that will create yet another layer to our object,
the file system layer. This is very similar to how we built our objects in pyTSK.

If you want to read how Metz explains Path Specification objects you can read about them
here: https://github.com/log2timeline/dfvfs/wiki/Internals

Tomorrow I will explain how we access raw images and then Thursday we will extract a file
from an image.

Post a Comment

[blogger][disqus][facebook][spotim]

Author Name

Contact Form

Name

Email *

Message *

Powered by Blogger.